
Determining Directional Contact Range
of Two Convex Polyhedra

Yi-King Choi1, Xueqing Li2, Fengguang Rong2, Wenping Wang1,
and Stephen Cameron3

1 The University of Hong Kong, Pokfulam Road, Hong Kong, China
{ykchoi,wenping}@cs.hku.hk

2 Shandong University, Shandong, China
{xqli,rfguang}@sdu.edu.cn

3 Oxford University Computing Laboratory, Parks Road, Oxford, OX1 3QD, U.K.
Stephen.Cameron@comlab.ox.ac.uk

Abstract. The directional contact range of two convex polyhedra is the
range of positions that one of the polyhedron may locate along a given
straight line so that the two polyhedra are in collision. Using the contact
range, one can quickly classify the positions along a line for a polyhedron
as “safe” for free of collision with another polyhedron, or “unsafe” for
the otherwise. This kind of contact detection between two objects is
important in CAD, computer graphics and robotics applications. In this
paper we propose a robust and efficient computation scheme to determine
the directional contact range of two polyhedra. We consider the problem
in its dual equivalence by studying the Minkowski difference of the two
polyhedra under a duality transformation. The algorithm requires the
construction of only a subset of the faces of the Minkowski difference,
and resolves the directional range efficiently. It also computes the contact
configurations when the boundaries of the polyhedra are in contact.

Keywords: directional contact range, separating distance, penetrating
distance, convex polyhedra, duality transformation, signed distance.

1 Introduction

The collision status of two objects, i.e., whether they are separate or intersecting,
as well as their contact configurations, i.e., at which parts they are in contact,
are important in many applications in CAD, computer graphics and robotics, or
other areas that involve physical simulations, where responses are subsequently
deduced based on these pieces of information. In this paper, we focus on the
collision status and contact configurations of two convex polyhedra, assuming
that they may only move along a given direction. The restriction regarding the
direction is deemed reasonable, as there are a lot of applications in which object
translations are only allowed in some specific directions. In industrial modeling
or motion design, for example, the directions of movements that a mechanical
part can take are limited by the constraints imposed by the degree of freedom of

F. Chen and B. Jüttler (Eds.): GMP 2008, LNCS 4975, pp. 127–142, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

128 Y.-K. Choi et al.

the part. The directional collision status of two objects is therefore useful, e.g.,
for object placements and motion design in a dynamic environment.

We define the directional contact range (DCR) of two convex polyhedra P and
Q with respect to a direction s to be the range of positions that Q can locate
along s so that P and Q are in contact or overlap, assuming that P is kept static.
Equivalently, we say that

DCR(P, Q, s) = [α, α] iff P ∩ Qt̂s �= ∅, ∀t ∈ [α, α]

where α, α ∈ R, ŝ = s/‖s‖ and Qt̂s = {q + t̂s | q ∈ Q} is the result of Q
translated by t̂s. In particular, Qαŝ and Qαŝ are in external contact with P , i.e.,
they touch P only at some boundary points.

The DCR essentially gives the relative positions between the polyhedra at
which they are in contact, and therefore can solve collision queries when Q is
considered moving along s. Since the polyhedra are convex, it is obvious that
the DCR is either empty or is a single closed interval. The directional separating
distance or penetration distance of P and Q, when they are separate or overlap,
respectively, can also be computed from the DCR, so that if DCR(P, Q, s) =
[α, α], the required directional distance is given by min{|α|, |α|}.

Object interference testing or collision detection has been intensively studied
in the fields of computational geometry, computer graphics and robotics (see
a survey in [1,2]). Given two convex polyhedra, Cameron and Culley consid-
ered their minimum translational distance [3]; and there are convex optimiza-
tion methods [4] and feature-based algorithms [5,6] that determine their closest
features. Kim et al. [7] estimated the penetration depth of two intersecting poly-
hedra using the Gaussian map of their Minkowski sum. In relation to directional
contact, Dobkin et al. devised an O(log2 n) algorithm to compute the directional
penetration depth of two intersecting convex polyhedra [8], and showed that the
directional distance corresponds to the directional distance between the origin
and the Minkowski difference polyhedron, M , of the polyhedra. Hence, a brute-
force algorithm for finding the directional distance by intersecting a line from
the origin and M has O(n2) complexity, which is also the geometric complexity
of M . There are efficient solutions for computing the intersection of line and
a convex polyhedron, including linear programming approaches or geometrical
methods such as [9,10] that transform the problem to locating a point in a convex
plane partition in the dual space. Our algorithm differs by using another form
of duality transformation, and most importantly, we exploits the fact that M
is not a general convex polyhedron, but the Minkowski difference of two convex
polyhedron with much simpler geometric complexity.

1.1 Major Contributions

In this paper, we present an algorithm to compute the directional contact range
(DCR) of two convex polyhedra efficiently. The goal of the algorithm is to seek
a face on the Minkowski difference of the two polyhedra which gives the contact

Determining Directional Contact Range of Two Convex Polyhedra 129

features at their touching positions, given that one of them may move freely along
a specific direction. We define a convex function which guarantees convergence
and therefore guides the search in a robust manner. Moreover, we break down
the search on the Minkowski difference into three different phases (corresponding
to the three different types of faces), skipping most of the EE-type faces which
is of O(n2) where n is the number of faces of the polyhedra (Section 3.2), and
thereby obtaining the target face efficiently.

The essence of our idea is to consider the DCR problem in its dual equivalence.
We study the Minkowski difference under a duality transformation and a convex
function is then defined as the signed distance of a vertex on the dual polyhedron
to a plane. We also show that maximizing the convex function is essentially the
same as to finding a face containing the intersection of a ray from the origin with
the Minkowski difference in the primal space, hence solving the DCR problem.
The convex nature of the search process is difficult to perceive in the primal
space intuitively, but could be proved easily by its dual counterpart. Although
our algorithm is based on the concept of duality transformation, its computation
does not involve any explicit application of the transformation and therefore no
overhead is incurred in this regard.

2 The Key Idea

In this section, we explain the fundamental idea of our algorithm, which relates
the DCR problem of two polyhedra in the primal space to a search for a vertex
on a Minkowski difference polyhedron in the dual space. Let P be a convex
polyhedron in E

3, then VP , FP , and EP denote the set of vertices, faces, and
edges of P , respectively.

2.1 Minkowski Difference of Two Polyhedra in Relation to DCR

Given two polyhedra P and Q, let −Q = {−q | q ∈ Q}. We consider the
Minkowski difference of P and Q (or equivalently, the Minkowski sum of P and
−Q) defined by M ≡ P ⊕ (−Q) = {p − q | p ∈ P, q ∈ Q}. Since P and Q are
both convex, M is also a convex polyhedron [11]. The origin o is in M if and
only if there are some p ∈ P and q ∈ Q such that p = q, i.e., P and Q overlap
and share a common point. Moreover, o is on the boundary of M if and only if
P and Q share common boundary points only.

When Q moves in a direction s, M moves in the opposite direction −s. If P
and Q do not intersect along s, M does not contain the origin when moving along
s and the DCR is empty. Otherwise, the DCR is the range of distances that M
can travel along s with the origin remains in M . In other words, the DCR are
bounded by the distances from the origin to the intersections of the line os and
the boundary of M (Fig. 1). These two intersection points corresponds to when
P and Q are in external touch. In the case where os has only one intersection

130 Y.-K. Choi et al.

with M , the DCR is a single value which is the distance from the origin to the
intersection. The intersection points must lie on the boundary of M , and hence
our primary task is to compute the intersection between the line os and the
boundary M . Since intersections must always lie on some faces of M , faces of
M (but not edges nor vertices) are only considered in our algorithm.

(a) (b)

Fig. 1. The DCR [α, α] of two convex polyhedra P and Q, and the corresponding
distances from the origin to the boundary of the Minkowski difference M when P and
Q are (a) separate; and (b) overlap

Proposition 1. Let the line os be given by s(u) = uŝ, u ∈ R. Suppose os
intersects M = P ⊕ −Q at the faces fmin and fmax with points of intersection
s(umin) and s(umax), respectively, so that umin ≤ umax and s(u) ∈ M if and only
if u ∈ [umin, umax]. Then the DCR of P and Q is given by [umin, umax].

Note that fmin (or fmax) could be more than one face which happens when os
intersects M at a vertex or an edge.

2.2 The Dual of the Minkowski Difference

Given an arbitrary point c ∈ R, we may classify the faces of M into three groups
depending on the positions of c to the plane Hf containing a face f of M : f is
a supporting face, a convex face or a concave face if c lies on Hf , in the inner
half space (i.e., the half space in which M resides) of Hf , or in the outer half
space of Hf , respectively.

Suppose M is transformed under a duality as described in Appendix A.1
using an interior point of M as the centre of duality. Then every faces of M are
properly transformed to a vertex not at infinity and the dual M∗ is a convex
polyhedron, with vertices F∗

M and faces V∗
M . The dual of an edge defined by two

adjacent vertices v0, v1 in M is an edge common to two adjacent faces v∗
0 , v∗

1
in M∗. In general, if an arbitrary point c not in the interior of M is used as
the centre of duality, the above correspondence between the features of M and
M∗ still applies, but M∗ is no longer compact in E

3. Its boundary is defined by
two disjoint shells that extends to infinity. In particular, the supporting faces
(if any) of M with respect to c are transformed to points at infinity, while the
dual of the convex faces are the convex faces w.r.t. the origin in the dual space
which form one of the continuous convex shell of M∗ (Fig. 2). As we shall see,
our algorithm will work on the convex faces with respect to a given point.

Determining Directional Contact Range of Two Convex Polyhedra 131

Fig. 2. A 2D illustration of M and its dual M∗ with the centre of duality c not in M .
The convex faces w.r.t. c on M (thick lines) corresponds to the black points lying on
the convex shell (marked with thick lines) with respect to the origin in E

3∗.

2.3 Signed Distance of a Face from the Origin

Suppose that a plane is given by Π : AT x = k where A ∈ R
3, x = (x, y, z)T ,

k ∈ R, and we assume that Π is normalized such that ‖A‖ = 1 and k > 0 is
the shortest distance from the origin to Π . The signed distance of a point x0 to
the plane Π is then given by dΠ(x0) = AT x0 − k. Given a point c /∈ M, let
F̂c denote the set of convex faces of M with respect to c. We define the signed
distance of f ∈ F̂c, denoted by d(f), to be the signed distance of f∗ to the plane
o∗ in E

3∗, i.e., d(f) = do∗(f∗), where c is the centre of duality and o∗ is the
dual of the origin o ∈ E

3. Let Hf : NT x = k, where ‖N‖ = 1 and k > 0, be the
containing plane of f . Then f∗ = N/(k − NT c) ∈ VM∗ in the dual space with
c as the centre of duality. The origin o is first translated by −c and the plane
equation of o∗ is −cT x = 1. Hence, we have

d(f) = do∗(f∗) =
−cT

‖c‖ · N
k − NT c

− 1
‖c‖ = − k

‖c‖(k − NT c)
. (1)

The quantity do∗(f∗) uniquely determines a plane l∗ in E
3∗ passing through

f∗ and parallel to o∗ such that do∗(x) = do∗(f∗) for all points x ∈ l∗ (Fig. 3).
Since l∗ and o∗ have the same normal direction, it can also be shown that l, c
and o are collinear. Moreover, l∗ passes through f∗ and hence l must lie on Hf ,
the containing plane of f . This implies that l is the intersection of Hf and the
line co.

Suppose that the ray co, given by l(t) = −tc, t > 0, hits some faces in F̂c

(Fig. 3). Then the containing planes of all faces in F̂c must intersect co. The
signed distance for a convex face ft ∈ F̂c whose containing plane intersects co
at a point l(t) is d(ft) = (1 − t)/(t ‖c‖). Since d(ft) is a decreasing function
for t > 0, it means that the containing plane of the face with maximum signed
distance over all faces in F̂c, has the closest intersection to c with the ray co.
Due to the convexity of M , this intersection must lie on a face of M and we have
the following proposition:

Proposition 2. Let fmax ∈ F̂c be the convex face with respect to c whose signed
distance is the maximum over all faces in F̂c, i.e., fmax = arg maxf{d(f) | f ∈
F̂c}. Then fmax contains an intersection of the ray co and M .

132 Y.-K. Choi et al.

Fig. 3. The vertex f∗
0 in E

3∗ attaining maximum signed distance to o∗ is the dual of
a face f0 in E

3 intersecting the ray co

Since f∗ lies on a convex shell, the signed distance function is convex over F̂c.
Starting from a face f ∈ F̂c, we may therefore search for fmax at which the
ray co intersects M . It is important to note that the intersection needs not be
solved, as its distance from the origin can be computed directly from d(fmax)
as follows. We established that d(f) = (1 − t)/(t‖c‖) is the signed distance of a
convex face f ∈ F̂c whose containing plane intersects co at l(t). Let α(f) be the
signed distance of l(t) from o along the ray co. Then,

α(f) = (t − 1)‖c‖ =
(1

d(f)‖c‖ + 1
− 1

)
‖c‖ = − d(f)‖c‖2

d(f)‖c‖ + 1
.

Hence, the distance from the origin to the intersection of fmax and co is given
by α(fmax).

3 The Algorithm

Given two convex polyhedra P and Q, and a direction s ∈ R
3, the following

algorithm computes the DCR of P and Q with respect to s:

Step 1: Check whether the line os intersects M = P ⊕ (−Q). If not, we have
DCR(P, Q, s) = ∅. Otherwise, choose a point cmin = us for some
u > 0, and that both o and M lie on the same side of cmin on os.
Choose also cmax = vs for some v < 0, with both o and M lying on
the same side of cmax on os.

Step 2: Using cmin as the centre of duality, search for fmin which attains the
maximum signed distance among all convex faces with respect to
cmin, i.e., fmin = argmaxf{d(f) | f ∈ F̂cmin}. Then, use cmax as the
centre of duality and search for fmax = arg maxf{d(f) | f ∈ F̂cmax}.

Step 3: Report DCR(P, Q, s) = [α, α] where α = −α(fmin) and α = α(fmax).

Our algorithm does not require the complete construction of the Minkowski
difference M . Moreover, we devise a novel search scheme in step 2 which skips
some faces in M in order to reach fmin and fmax efficiently. The details would
be discussed in subsequent sections.

Determining Directional Contact Range of Two Convex Polyhedra 133

3.1 Determining the Center of Duality c

If two polyhedra P and Q do not meet no matter how far Q moves along a
given direction s, their DCR with respect to s is empty. In this case, the line os
does not intersect the Minkowski difference M , which can be checked without
constructing M as follows.

Let Ṗ and Q̇ be the orthographic projection along s of P and Q to a plane
H normal to s. We construct the convex hull, CH(Ṗ) and CH(Q̇), of Ṗ and
Q̇, respectively. This can be done efficiently since the vertices of CH(Ṗ) and
CH(Q̇) are the silhouette vertices of P and Q as viewed along s. Then, we
obtain Ṁ = CH(Ṗ) ⊕

(
− CH(Q̇)

)
. Now, os intersects M if and only if CH(Ṗ)

and CH(Q̇) overlap, i.e., Ṁ contains the origin.
Suppose now that os intersects M . In general os has two intersections with

M which is convex, and therefore we need to choose two points, each as the
centre of duality to locate one intersection at one time. To locate the face fmax
of M (see Proposition 1), the centre of duality cmax should lie on os so that the
ray cmaxo hits fmax and that fmax is a convex face with respect to cmax. Hence,
we require that cmax = vs for some v < 0, and o and M be on the same side
of cmax on os. Now, cmax can be computed easily by approximating M with its
bounding box MBB = PBB ⊕ −QBB, where PBB and QBB are the bounding
boxes of P and Q, respectively. The point cmin = us for some u > 0 is then
chosen similarly.

3.2 Searching the Face with Maximum Signed Distance

Step 2 of our algorithm involves searching the faces fmax and fmin at which os
intersects M . We will only describe the search for fmax, since fmin can be found
in the same way using cmin instead as the centre of duality.

A brute-force search for fmax is to first construct M , which is of O(n2) com-
plexity. Moreover, to locate fmax directly on M using its face adjacency informa-
tion is inefficient, as face traversal can only advance to an immediate neighbour
at one step. We therefore break down the search for fmax in three successive
phases, each within an independent face subset of M . This allows a quicker leap
over the faces on M and hence a more rapid search of fmax. Also, the number
of faces on M that needs to be constructed are greatly reduced.

Let us define the supporting vertex of of a polyhedron P for a face f be
sP (f) = argmaxv{n(f) ·v | v ∈ VP }, where n(f) is the normal vector of f and ·
denote the vector dot-product. The Gaussian image of M , G(M), is obtained
by superimposing the Gaussian images G(P) and G(−Q) (Appendix A.2). For
any face fp ∈ FP , the point G(fp) must fall within the region G

(
s−Q(fp)

)
. Sim-

ilarly, the point G(fq) must fall within the region G
(
sP (fq)

)
. Hence, each point

in G(P) and G(−Q) corresponds to a face of FV- and VF-type, respectively, in
M (Fig. 4). Furthermore, each arc-arc intersection on S2 corresponds to a pair
of edges (one from P and one from −Q) sharing a common normal direction and

134 Y.-K. Choi et al.

Fig. 4. The planar representation of the Gaussian image G(M) by superimposing G(P)
and G(−Q). There are three types of vertices in G(M): (i) (white point) a point of
G(P) falling within a region of G(−Q), i.e., a face in Ffv; (ii) (black point) a point of
G(−Q) falling within a region of G(P), i.e., a face in Fvf ; and (iii) (shaded square) the
intersection point of two arcs, each from G(P) and G(−Q), i.e., a face in Fee.

amounts to a EE-type face in M . The FV-, VF- and EE-type faces form three
independent subsets Ffv, Fvf and Fee, respectively, which are given as follows:

Ffv: Each face F (fp,vq) is a point set {x + vq | x ∈ fp}, where fp ∈ FP

and vq ∈ V−Q. Also, vq = s−Q(fp).

Fvf : Each face F (vp, fq) is a point set {vp + x | x ∈ fq}, where fq ∈ F−Q

and vp ∈ VP . Also, vp = sP (fq).

Fee: Each face F (ep, eq) is a parallelogram with vertices v0 = vp0+vq0 ,v1 =
vp1+vq0 ,v2 = vp1+vq1 ,v3 = vp0+vq1 where vp0 ,vp1 ∈ VP , vq0 ,vq1 ∈
V−Q, and ep = (vp0 ,vp1) ∈ EP , eq = (vq0 ,vq1) ∈ E−Q. Moreover, the
Gaussian images of ep and eq intersect on S2 (Fig. 4).

The following pseudocode searches for fmax with the maximum signed distance
dmax among all convex faces with respect to c on M = P ⊕ −Q:

Procedure MaxSignedDistance(P , Q, c)
(ffv, dfv) ← Search-FV
(fvf , dvf) ← Search-VF
(fmax, dmax) ← Search-EE(dfv, dvf)
return (fmax, dmax)

Search-FV. This procedure is to search for a face with the maximum signed
distance among all convex faces with respect to c in Ffv. The search is conducted
according to face adjacency of P . It is important that we start from a convex
face on M , which ensures that all subsequent faces in the search are convex
faces, due to the convexity of the signed distance function. We choose f0 =
argmaxf{n(f) · co | f ∈ FP }, where n(f) is the normal vector of a face f ,
as the initial face such that the corresponding face F

(
f0, s−Q(f0)

)
∈ Ffv is

guaranteed to be a convex face with respect to c. Starting from f0, the search in
Search-FV considers the neighbouring faces of the current face in P and advances

Determining Directional Contact Range of Two Convex Polyhedra 135

to one whose corresponding face in M has the local maximum signed distance.
Neighbouring (or adjacent) faces are those faces incident to the vertices of the
current face in P . Two faces adjacent in P may not constitute adjacent faces in
M , and therefore a gain (by skipping some faces in M) is obtained by advancing
faces in the search based on their adjacency in P .

The procedure is described in the following pseudocode. The function Signed-
Distance-FV(f) constructs a face F

(
f, s−Q(f)

)
∈ Ffv and computes its signed dis-

tance using Eq. (1). The supporting vertex of −Q for a face f is determined using
the hierarchical representation of a polyhedron by Dobkin and Kirkpatrick [12].

Procedure Search-FV
dfv = SignedDistance-FV(f0)
For each iteration i,

For each of the n faces f j
i , j = 0, . . . , n − 1, that are adjacent to fi in P ,

dj
i ← SignedDistance-FV(f j

i).
If dfv < dk

i , where dk
i = max{dj

i},
dfv ← dk

i , fi+1 ← fk
i .

Else,
Return (fi, dfv).

Theorem 1 states the correctness of Search-FV whose proof is omitted due to
space limitation.

Theorem 1 (Correctness of Search-FV). The face ffv returned by Search-
FV attains the maximum signed distance dfv among all convex faces in Ffv with
respect to c, i.e., ffv = arg maxf{d(f) | f ∈ Ffv ∩ F̂c}.

Search-VF. This procedure searches for a face with maximum signed distance
among all convex faces with respect to c in Fvf . The face ffv = F

(
fp, s−Q(fp)

)
∈

Ffv computed by Search-FV is supposed to be closest to fmax among all faces in
Ffv, and it should give a good starting point for subsequent search. Hence, we
choose the initial face for Search-VF as a face f0 that is incident at s−Q(fp) in
−Q. The search then proceeds like Search-FV by interchanging the role of P and
−Q. Similarly, we have the following theorem.

Theorem 2 (Correctness of Search-VF). The face fvf returned by Search-
VF attains the maximum signed distance dvf among all convex faces in Fvf with
respect to c, i.e., fvf = arg maxf{d(f) | f ∈ Fvf ∩ F̂c}.

Search-EE. The next step is to search for the remaining convex faces in Fee,
starting from ffv or fvf , whichever attains the greater signed distance. Let ep

and eq be edges in EP and E−Q, respectively. A face F (ep, eq) ∈ Fee is formed
only if the Gaussian images of ep and eq intersect on S2 (Section A.2). The steps
of Search-EE are given in the following pseudocode:

136 Y.-K. Choi et al.

Procedure Search-EE
dee ← max{dfv, dvf}.
fm ← the face ffv or fvf attains dee.
If fm = ffv = F

(
fp, s−Q(fp)

)
, then

FS0 ← all possible faces F (ep, eq), where ep is an edge incident to a
vertex of fp, and eq is an edge incident with s−Q(fp),

Else if fm = fvf = F
(
sP (fq), fq

)
, then

FS0 ← all possible faces F (ep, eq), where ep is an edge incident with sP (fq),
and eq is an edge incident to a vertex of fq.

For each iteration i = 0, 1, 2, . . .

Let f̂i = F (êp, êq) be the face in FSi with the maximum signed distance.
If dee < d(f̂i), then

dee ← d(f̂i), fee ← f̂i

FSi+1 ← all possible faces F (ep, eq), where ep is an edge incident to an
end vertex of êp, eq is an edge incident to an end vertex of êq

Else
Return (fee, dee).

It can be shown that the initial face set FS0 contains all neighbouring EE-type
faces of the initial face fm, by considering all possible EE-type faces formed by an
edge incident to the vertex that forms fm and an edge incident with a face that
forms fm. Moreover, the subsequent face sets FSi includes all the neighbouring
EE-type faces of the current EE-type face f̂i with the maximum signed distance,
by considering all possible EE-type faces formed by two edges, each incident to
an end vertex of an edge forming f̂i. Hence, we have the following theorem:

Theorem 3 (Correctness of Search-EE). The face fmax returned by Search-
EE attains the maximum signed distance among all convex faces in F̂c with
respect to c, i.e., fmax = arg maxf{d(f) | f ∈ F̂c}.

3.3 Computation Details

Contact configurations. The faces fmin and fmax indicate the contact config-
uration of P and Q when they are in external contact along the DCR direction.
The contact features are given by the features on P and Q that form the faces
fmin and fmax. For example, if fmax = F (vp, fq) ∈ Fvf , the contact features of
P and Qαs are the vertex vp ∈ P and the face fq ∈ Q.

Supporting faces with respect to the centre of duality. We may encounter
supporting faces with respect to the centre of duality in our algorithm, which are
possible neighbours of a convex face. Supporting faces correspond to points at
infinity in the dual space (Section 2.2) and can be identified if k−NT c = 0 when
evaluating the signed distance given by Eq. (1). Supporting faces are ignored in
our algorithm without affecting its correctness.

Determining Directional Contact Range of Two Convex Polyhedra 137

To decide whether two arcs on S2 intersect. In Search-EE, to decide
whether two edges ep ∈ EP and eq ∈ E−Q form a face F (ep, eq) ∈ Fee, we check
whether G(ep) and G(eq) intersect on the Gaussian sphere S2. Let a,b be the end
points of G(ep), c,d be the end points of G(eq) and o be the centre of S2 (Fig. 5).
The arcs G(ep) and G(eq) intersect if and only if (1) c,d are on different sides of
the plane oba; (2) a,b are on different sides of the plane ocd; and (3) a,b, c,d
are on the same hemisphere. Consider the signed volume, |cba| = det[c b a],
of a parallelepiped spanned by three vectors a,b, c. The above three conditions
can be formulated as (1) |cba| × |dba| < 0; (2) |adc| × |bdc| < 0; and (3)
|acb| × |dcb| > 0. We need to compute |cba|, |dba|, |adc| and |bdc| only, since
|acb| = |cba| and |dcb| = |bdc|.

Fig. 5. Determining if two arcs intersect on S2. Arcs intersect in (i). No intersection
where (ii) condition (1); (iii) condition (2) and (iv) condition (3) is violated.

Span of faces with same normal direction. To simplify the preceding dis-
cussions, we assumed that all faces on M have distinct normal directions. How-
ever, this is not always true for convex polyhedra with arbitrary mesh structures.
In this case, a face is augmented to include also its neighbouring span of faces
with the same normal direction.

To avoid repetitive visits to a face. A hash table is used to record the
visited faces in each procedure to avoid unnecessary repetitive computations for
a face which is visited previously in the searching process.

4 Performance

The following experiments are designed to evaluate the performance of our al-
gorithm. A set of six convex polyhedra (Fig. 6) are used (whose names and
number of vertices are given in the brackets): a truncated elliptic cone (P1 –
20), a truncated elliptic cylinder (P2 – 50), two ellipsoids (P3 – 200, P4 – 500),
the convex hull of a random point set in a cube (P5 – 100), and the volume of
revolution of a convex profile curve (P6 – 200). The sizes of the polyhedra are
all within a sphere of radius 5. The cone and the cylinder are with the aspect
a : b : h = 1 : 2 : 4, where a, b are the sizes of the base ellipse and h is the height.
The size of the ellipsoids are in a : b : c = 2 : 2 : 5 and 2 : 4 : 5 respectively for
P3 and P4, where a, b and c are the length of the three major axes.

138 Y.-K. Choi et al.

Fig. 6. The six objects used in the experiments

Five pairs of objects are chosen for DCR calculations: (P2, P2), (P1, P3),
(P6, P6), (P4, P5) and (P4, P6), where the total number of vertices of the two
objects are 100, 220, 400, 600, 700, respectively. We also generated another 10
pairs of objects which are ellipsoids of the same size aspect as P4, but with dif-
ferent number of vertices. For each pair of objects P and Q, P is kept static
and Q assumes 40 random orientations; for each orientation, Q is also trans-
lated so that the shortest distance between the two objects ranges from −1.5 to
1.5 in 11 samples, of which 5 samples correspond to the cases where P and Q
intersect, 1 sample corresponds to touching, and 5 samples correspond to sep-
aration. Also, for each fixed shortest distance with a random orientation, we
compute the DCR between P and Q with respect to 40 random directions. It
means that, for each pair of convex polyhedra, we perform a total of 11×40×40
different DCR computations and the average CPU time for each run is taken.
Each reported non-empty DCR [α, α] along a specified direction s is verified by
translating Q along s by α and α, and using the GJK algorithm to compute the
shortest distance between P and the translated Q, which should be zero as the
objects are then in external contact. We note that the average shortest distance
is 1.9 × 10−6 with a standard deviation of 10−5; the maximum of the absolute
shortest distance is found to be 10−4.

The experiments were carried out on a desktop computer with an Intel Core
2 Duo E6600 2.40 GHz CPU (single-threaded) and a 2GB main memory. The
performance of our algorithm is shown in Fig. 7. It takes less than 0.25 millisec-
onds to compute the DCR of two convex polyhedra with a total of 1000 vertices.
Although the cylinder pair (P2, P2) is of only 100 vertices in total, the running
time in this case is disproportionally longer than expected. Not only that a face
at the planar bases of cylinders needs to be augmented to include the span of all
other coplanar faces (Section 3.3), the increase in running time is also due largely
to the fact that a face at the base has a large number of adjacent faces—which
are the 50 faces on the curved surface of a cylinder.

The result of ellipsoid pairs shows empirically an approximately linear growth
in the running time with respect to the total number of vertices. Recall that not
all faces on the Minkowski difference M are being constructed and visited. From
the above experiments, it is found that in a search of a single intersection on M ,
on average 13.7% of the faces on M is visited. In particular, only 2.5% of the
EE-type faces is visited on average, which means that most of the EE-type faces
are skipped in our algorithm.

Determining Directional Contact Range of Two Convex Polyhedra 139

Fig. 7. The average CPU time for computing the DCR of five pairs (Pi, Pj) of specific
convex polyhedra (P1 − P6), and 10 pairs of ellipsoids with varying number of vertices

A worst case scenario is designed where the number of EE-type faces is of
O(n2), where n is the number of vertices on the polyhedra. Two cones are con-
structed, each having 21 vertices (20 on the circular rim and 1 at the apex), 38
faces (20 on the slanted surface) and 57 edges. Both cones are very flat with
aspect ratio a : b : h = 12 : 12 : 1 (Fig. 8(a)). The Gaussian image of each
cone has one point (corresponding to the 18 faces on the flat surface) that is
antipodal to a set of 20 points (corresponding to the 10 faces on the slanted
surface), and 20 great arcs that looks like great semicircles, which corresponds
to the edges on the circular rim (Fig. 8(b)). One of the cones is rotated about
the y-axis by 90 degrees, so that each of its 20 great semicircles in the Gaussian
image intersects with half of the great semicircles in the Gaussian image of the
other cone (Fig. 8(b)). Hence, there are in total 38 FV-type, 38 VF-type and
200 EE-type faces on the Minkowski difference of the cones. Our algorithm, on
computing a single intersection on the Minkowski difference, requires a visit to
only 21 FV-type, 21 VF-type and 20 EE-type faces, showing that most of the
EE-type faces (90%) are skipped which renders an efficient computation.

Fig. 8. (a) Two thin cones whose DCR is computed. (b) Gaussian image of one of
the cones. (c) Gaussian image of the Minkowski difference of the cones; the white
circles correspond to the EE-type faces (only features on the front-facing surface of the
Gaussian sphere are shown.)

140 Y.-K. Choi et al.

Fig. 9. The DCR between two cylinders with respect to the z-direction. The white
cylinder is static and the grey cylinder rotates about its principle x-axis. The first
10 instants (with the angle of rotation for the grey cylinder θ = 0 to 90) of the two
cylinders are shown.

Next, we compute the DCR of two circular cylinders, both are of radius 1
and length 4. The height of both cylinders lie along the z-axis, and the first
cylinder (in white) stays static at the origin, while the other cylinder (in grey),
with centre at z = 4, assumes different rotations about its principal x-axis.
The angle of rotation is from 0 to 360 degrees, with 10 degrees increments. The
two cylinders have external contact at the planar faces when θ = 0, 180 and
360 degrees. The DCR of the two cylinders with respect to the +z-direction
computed by our algorithm is shown in Fig. 9.

5 Conclusion

We have presented a novel method for computing the directional contact range
(DCR) between two convex polyhedra with respect to a given direction. The
DCR of two convex polyhedra can be computed by finding the intersections
of a line with the Minkowski difference M of the polyhedra. We consider the
problem in the dual space where a face on M corresponds to a vertex on the
dual polyhedron M∗, and formulate the DCR computation in forms of searching
a vertex which attains the maximum signed distance from a plane. The search
problem in the dual space is easily shown to be convex, and a search scheme is
devised accordingly to locate the face that contains the required intersection on
M efficiently. The search scheme is divided into three stages, each working only
on a subset of the faces on M . This division allows the elimination of most EE-
type faces whose worst case complexity is O(n2). Our experimental results show
that our algorithm exhibits efficient performance. Although our tests do not
experience major robustness problems, we note here that the signed distance
function d(f) is non-linear with respect to the distance between the duality

Determining Directional Contact Range of Two Convex Polyhedra 141

centre c and the intersection of f and co. Possible numerical issues thus induced
will be further explored.

Acknowledgement

This work is supported in part by research grants from the Research Grant
Council of the Hong Kong SAR (HKU 7031/01E), and in part by the Natural
Science Foundation of Shandong Province (Y2005G03).

References

1. Jiménez, P., Thomas, F., Torras, C.: 3D collision detection: a survey. Computers
& Graphics 25(2), 269–285 (2001)

2. Lin, M.C., Manocha, D.: Collision and proximity queries. In: Handbook. of Discrete
and Computational Geometry (2003)

3. Cameron, S., Culley, R.: Determining the minimum translational distance between
two convex polyhedra. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp.
591–596 (1986)

4. Gilbert, E.G., Johnson, D.W., Keerthi, S.S.: A fast procedure for computing the
distance between objects in three-dimensional space. IEEE J. Robot. Automat. (4),
193–203 (1988)

5. Lin, M.C., Canny, J.: A fast algorithm for incremental distance calculation. In:
Proc. IEEE Int. Conf. on Robotics and Automation, Sacremento, pp. 1008–1014
(April 1991)

6. Mirtich, B.: V-Clip: Fast and robust polyhedral collision detection. ACM Trans.
Graph. 17(3), 177–208 (1998)

7. Kim, Y.J., Lin, M.C., Manocha, D.: Incremental penetration depth estimation be-
tween convex polytopes using dual-space expansion. IEEE Trans. Visual. Comput.
Graphics 10(2), 152–163 (2004)

8. Dobkin, D.P., Hershberger, J., Kirkpatrick, D.G., Suri, S.: Computing the
intersection-depth of polyhedra. Algorithmica 9(6), 518–533 (1993)

9. Günther, O.: Efficient structures for geometric data management. Springer, New
York (1988)

10. Kolingerová, I.: Convex polyhedron-line intersection detection using dual represen-
tation. The Visual Computer 13(1), 42–49 (1997)

11. Grünbaum, B.: Convex Polytopes. Wiley, Chichester (1967)
12. Dobkin, D.P., Kirkpatrick, D.G.: A linear algorithm for determining the separation

of convex polyhedra. J. Algorithms 6(3), 381–392 (1985)
13. Levy, H.: Projective and Related Geometry. Macmillan, Basingstoke (1964)

A Major Concepts

A.1 Duality Transformation

There are different formulations for duality transformation. A more general form
is to consider the self-dual duality with respect to a given non-singular quadric
surface B : XT BX = 0 where X = (x, y, z, 1)T is the homogeneous coordinates

142 Y.-K. Choi et al.

of a point, and B is a 4 × 4 real symmetric matrix. The dual of a point Y0 is a
plane Y : Y T

0 BX = 0 (the polar of Y0) and the dual of a plane V : V T
0 X = 0 is

a point U0 = B−1V0 (the pole of V [13]). It is easy to verify that if Y is the dual
of Y0, then Y0 is the dual of Y. Also, if Y0 is a point on B, its dual is the tangent
plane to B at Y0. In this work, we consider duality transformation with respect
to the unit sphere in E

3. The dual relationship between a point and a plane in
E

3 in terms of affine coordinates x = (x, y, z)T is as follows. Suppose a plane
Π , not passing through the origin, is given by AT x = k in the primal space E,
where A ∈ R

3 and k is a nonzero real number. A duality transformation maps Π
to a point w = A/k in the dual space E

3∗. A point u �= 0 in E
3 is transformed

to a plane U : uT x = 1 in E
3∗. If we extend E

3 to include the plane at infinity
(i.e., the extended Euclidean space), a plane passing through the origin in E

3

is mapped to a point at infinity in E
3∗; whereas the origin in E

3 is transformed
to the plane at infinity in E

3∗. Note that E
3 is the dual space of E

3∗. We use
ψ∗ to denote the dual counterpart of an entity ψ in E

3. We may also consider a
duality transformation centred at an arbitrary point c ∈ E

3. This can be done
by first translating the origin in E

3 to c before applying duality, and we call c
the centre of duality.

A.2 Gaussian Image of a Polyhedron

The Gaussian image G(P) of a convex polyhedron P is a planar graph embedded
on the unit sphere S2 (Fig. 10). The Gaussian image of any feature (i.e., vertex,
edge or face) φ of a polyhedron P is the set of normal directions of planes that
may come into contact with P at φ. In other words, φ is the supporting feature
of P in the directions represented by its Gaussian image. Hence, a face f ∈ FP

corresponds to a point G(f) = n̂(f) ∈ S2 where n̂(f) is the unit normal vector
of f ; an edge e ∈ EP common to two faces f0, f1 ∈ P corresponds to a great arc
G(e) connecting two vertices G(f0) and G(f1); a vertex v ∈ VP common to the
faces f0, . . . , fm corresponds to a convex spherical polygon G(v) whose vertices
are G(f0), . . . , G(fm).

Fig. 10. A polyhedron P and its Gaussian image G(P) on S2

	Determining Directional Contact Range of Two Convex Polyhedra
	Introduction
	Major Contributions

	The Key Idea
	Minkowski Difference of Two Polyhedra in Relation to DCR
	The Dual of the Minkowski Difference
	Signed Distance of a Face from the Origin

	The Algorithm
	Determining the Center of Duality c
	Searching the Face with Maximum Signed Distance
	Computation Details

	Performance
	Conclusion
	Major Concepts
	Duality Transformation
	Gaussian Image of a Polyhedron

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

